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ABSTRACT

It has been noted that coronal holes appear to be associated with

regions of diverging magnetic field in the corona. We set out to test

the hypothesis that coronal holes may be caused by an increased flow of

energy into the solar wind resulting directly from this diverging magnetic

field pattern. Simple models were devised to approximate the energy flow

down into the transition region and up into the solar wind as a function

of the temperature, density, and rate of field line divergence in the

corona. By assuming the rate of mechanical energy influx into the corona

to be constant, it was then possible to solve numerically for the coronal

temperature and density as a function of the rate of field line divergence.

The results of these calculations demonstrate that a diverging field

pattern can, indeed, bring about reductions in the temperature and density

at the base of the corona comparable to those observed in coronal holes.



I. Introduction

The work of Burton (1968), Tousey et al. (1968), and Munro and

Withbroe (1972) has established the existence of "holes" in the corona

characterized by abnormally low densities and temperatures; and Krieger

et al. (1973) have found that such coronal holes appear to be the source

of high velocity, enhanced density streams in the solar wind as observed

at the earth's orbit. It has further been noted by Altschuler et al.

(1972) that coronal holes appear to be associated with regions of

diverging magnetic field in the corona.

We have noted that one effect of a diverging magnetic field would

be to lower the "throat" in the equivalent "Laval nozzle" which represents

the mechanism by which subsonic coronal plasma is accelerated into the

supersonic solar wind (Parker, 1963). Thus an increase in the divergence

of the magnetic field will result in higher power input from the corona

into the solar wind, so that there will be a correspondingly smaller

return of power from the corona via the transition region to the chromo-

sphere. This would result in a lower temperature gradient in the transi-

tion region and a lower temperature of the corona.

Our aim in this article is to test this proposed interpretation of

the mechanism of coronal holes by calculating the properties of a simpli-

fied model.

II. Model Used

The model we have adopted comprises the following parts: (a) an

energy source that injects a certain constant flux of energy into the

base of the corona; (b) an energy outflow from the corona due to
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conduction of heat downward into the transition region; (c) an energy

outflow from the corona due to particles flowing out into the solar

wind; and (d) an empirical relation between the temperature Tc and

density Nc at the base of the corona (from here on the subscript c

will refer to quantities evaluated at the base of the corona or,

equivalently, the top of the transition region). We proceed to elabo-

rate the model used for each of these parts.

(a) Energy Source

The source of the energy flux F injected at the base of the

corona is presumably mechanical waves propagated up from the photo-

sphere, but for our purposes the nature of the source is unimportant;

we require only that such a source exist. In reality this energy is

probably deposited over a finite range of height, but here we assume

for simplicity that it is all dumped at the base of the corona.

(b) Energy Loss into Transition Region

We need a simple model that will give us the rate of heat loss

into the transition region as a function of the temperature at the

base of the corona. To arrive at such a model we note that the

transition region is in hydrostatic equilibrium, so that

0 = -2Ngg - (2NkT) (1)
dz

where N is the electron density, T is the temperature, k is

Boltzmann's constant, p is the mean particle mass (which we take to

be half the mass of a proton), g is the surface gravity of the sun,

and z is the height above the base of the transition region. We

assume that the temperature structure of the transition region is
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dictated by the downward heat flux Fd, which we assume to be constant

throughout the transition region. Hence

F = aT5 / 2 dT (2)
d dz

where a = 1.0 x 10- 6 (in cgs units). Equations (1) and (2) can be

combined to yield

NT = NbTb exp - ga T5/2 T5/2 (3)

where the subscript b refers to quantities evaluated at the base

of the transition region. Since Tb < < T once we get much above

the base of the transition region, equation (3) tells us that

NT NT exp ga T5/2 (4)
bb 5kFd

Equation (4) can be rewritten in the form

NT NbTb exp - (T/TF)5/2 (5)

where

5kF 2/5

TF 2pga (6)

By comparing the plot given in Figure la of the observed density versus

temperature for the upper transition region and corona, based on data

from Allen (1973), with the plot given in Figure lb based on equation

(5), we see that equation (5) best reproduces the observational data

if Tc  is approximately equal to TF. Hence, inverting equation (6),

we obtain

F 2 ga T5/2 (7)
d 5k c
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as our final equation giving the downward heat flux Fd as a function

of the temperature at the base of the corona.

(c) Energy Loss into Solar Wind

To calculate the energy loss into the solar wind, we wish to use

the simplest model possible. We therefore assume the corona to be

isothermal and in hydrostatic equilibrium out to a radius R = 1011 cm

from the center of the sun1. At this radius we connect the corona to

a simple polytrope model of the solar wind, with a single polytrope

index a holding all the way out to infinity.

The equation describing the isothermal part of the corona between

R and R is simply
c w

2NcGMb d
0 = 2 dR (2NkTc) (8)

where G is the gravitational constant, M. is the mass of the sun,

and R is the radial distance from the sun's center. Equation (8)

readily integrates to give N in terms of Nc

Nw = Nc exp - * R R (9)

c c w

Our basic solar wind equations are the hydrodynamic equation

dv dP 2GMY pN
2N pv dR dR 2 (10)

1. From here on the subscript w will refer to quantities evaluated

at this radius. In selecting this radius for the base of our solar

wind we are simply following Parker (1963), who found that it

provided a better fit to the observed solar wind than would a lower

value of R
w
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where v is the solar wind velocity and P is the pressure; the

continuity equation

NvRs = constant (11)

where the matter is assumed to follow the magnetic field lines and s

is a parameter describing the rate of divergence of the field 
lines

(e.g., s = 2 for radial field lines); the ideal gas law

P = 2NkT, "(12)

and a heat equation, for which we use a polytrope law

P cc Te (13)

where y is the polytropic index (0 = 1 for isothermal expansion and

i = 5/3 for adiabatic expansion). Making the substitutions

2
2kT 

(14)

2kT
c

G (15)
R kTc

and

R (16)

W

we obtain our general solar wind equation

C, IS 
w 1L - 1 s w (17)

l 2 )s 2 (-l)s

for # 1. Enuation (17) integrates to give
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a-(
X 2 -1/2 -s (18)

a-1 w a8-

subject to the conditions

as < X < a (19)
a-1

for the existence of a subsonic-supersonic transition (as elaborated

by Parker, 1963). To find the value of 1w, we use the fact that the

brackets on the left-hand and right-hand sides of equation (17) must

both vanish at the same critical radius Ccrit (for a wind-type

solution), and then solve the equations to obtain

crit =  X (20)
2s crit

and 0+1

Ccrit (2 l )2/m 2 (21)

where

m = c + 1 - 2s(o - 1) . (22)

On substituting (20) and (21) into (18) and assuming that w < < 1,

we finally obtain
1 m

w )s4 - 1) 1-1 (23)
w 2 2s m

and

X m
- (24)

crit 2s [ -X(2-l)] (24)

The particle flux J at R = Rw is just

w 2N v = 2N 2kT )/ 2 (25)
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Hence, by continuity, the particle flux at the base of the corona J

must be

( R s 2kT 1
(R 2N (2c )/2 1/ 2  (26)

We have only to multiply equation (26) by the energy gain per particle

E between R = R and R = - to obtain the total flux of energy at
pp c

R = Rc going into the solar wind. To find Ep, we add the gain in

gravitational energy between R = R c  and R = c to the kinetic energy

at R = -, found from equation (18), and subtract the thermal energy

at R = R to obtainc

E = kTc ( 3 (27)

(There is no thermal energy at infinity since, for a > 1, T goes to

zero.) Hence, using euqations (9), (23), (26), and (27), we find that

the total flux F of energy going up into the solar wind from R = R

is given by

Rs [GM 2kT 1/2
SkT exw 1 1 c

c cu 1-1 2 R kT c R )/

(28)

2s - 2s

2 )2(c 2s C+1 -2s(0-1)

which gives F as a function of T , N c, a and s. (The divergence
u c c

defined by s need hold steady only as far as the critical radius;

beyond that radius it can change without affecting Fu.)

(d) Relation Between T and Nc c

The density in the transition region and corona is affected by what

goes on in the chromosphere. Since we have no good theoretical model
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of how the chromosphere is affected by the heat flux from the transition

region, we instead use a simple relation between T and N based on
c c

the empirical observation that the intensity of most lines formed in the

transition region is unaffected by the presence of a coronal hole (Munro

and Withbroe, 1972). Because the intensity of a given line is proportional

to N2 dT )- evaluated at the temperature of formation of that line, this

implies that at a given temperature in the transition region

N dT )1/2 (29)

or, using equations (2) and (7),

N c T5 /4 (30)
c

For any column of gas in hydrostatic equilibrium, reduction of the

temperature at all levels beneath a certain altitude will lead to

reduction of the density of gas at that altitude relative to the density

at the base of the column. However, equation (30) tells us that in the

transition region the density will go down in proportion to T5 /4 if T
c c

decreases. Therefore, the density Nc  at the base of the corona must

go down by at least this factor but probably not much more, so as a

reasonable estimate we take

5/4
N = T (31)

c c

for our relation between N and T . To make this into an equalityc c

we write

N T 5/4
c C

7 = (32)
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where N and T are the quiet-sun density and temperature at
c,o c,o

the base of the corona.

III. Basic Procedure

We now have euqations giving Fd  as a function of Tc (equation (7)),

Fu as a function of Nc, Tc, o, and s (equation (28)), and Nc as a

function of T (equation (32)). What we wish to know is how T and
c c

Nc will be affected as s is altered; i.e., whether a coronal hole

will be produced if the rate of divergence of the field lines is significantly

increased. To investigate this question, we select a value of 0

consistent with solar wind observations, put observed quiet-sun values of

T and N into equation (32), and substitute the result into equation
c c

(28). This allows us to write F as a function of T and s only.u c

By conservation of energy, we can assert that

F d(T c) + F (Tc ,s) = F (33)

and since we have assumed F (the mechanical energy input) to be constant,

we have a relation between T and s which can be solved numerically for

T as a function of s, once we have assigned a value to F. To select

such a value for F we evaluate the left-hand side of equation (33) for

normal conditions. Once we have solved for T (s), the value of N forc c

any s follows immediately from equation (32).

IV. Results

We wish to compare the results of our model with those found

observationally by Munro and Withbroe (1972) as given in their Table 1.
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For the quiet-sun temperature and density we use their results for the

quiet region adjacent to the hole (their position A) rather than their

OSO-4 standard quiet region, because the latter probably contains con-

tributions from regions with closed magnetic field configurations, which

are not relevant to our model. For the value of s (the magnetic field

divergence rate parameter out to the critical radius defined by equation

(11)) corresponding to this quiet region we take s = 1. This somewhat

arbitrary choice is made to reflect the fact that if the field lines in

the hole diverge significantly faster than radially, then the field lines

in regions adjacent to the hole probably diverge somewhat slower than

radially. In order to select a value of c, we tried all values from

1.10 to 1.20 (in steps of 0.01) and calculated vE, TE, and NE at the

earth's orbit for each case (assuming that the field lines become radial

beyond the critical point). The value of 0 which gave the best fit to

the observed quiet solar wind was y = 1.15; for this case we found

5 -3

vE = 330 km/sec, TE = 1.3 x 105 K, and NE = 5 cm -3. In Figure 2

we plot the resulting coronal parameters T , N , and N as a function
c c w

of s for this value of c.

The results given in Figure 2 can be compared to the parameters

found by Munro and Withbroe for the center of the hole they observed

(their position D): at this position they found Tc = 1.05 x 106 K and

8 -3
N = 3.0 x 10 cm . If we consider s = 4 or 5 to be a reasonable

c

reflection of the diverging field pattern one might expect, we find our

results to be a little higher than those of Munro and Withbroe but

definitely in the same general neighborhood (we would even expect our

N to be a little on the high side owing to the nature of our derivation
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of equation (32)). In view of the simplicity of our model, the agreement

lends considerable support to our original hypothesis that diverging field

patterns actually cause coronal holes. The only point of substantial

disagreement between our results and those of Munro and Withbroe concerns

6
Fd . Their value of Fd drops by a factor of about 8 (from 1.0 x 10 to

5 -2 -1
1.3 x 10 erg cm sec ) while ours is much lower and drops only by a

5 4 -2 -1
factor of about 2 (from 1.7 x 10 to 7.9 x 10 erg cm sec ).

V. Discussion

Before we close, there are a few points warranting further comment.

One is that, while our solution seems to assume a single value of s to

hold all the way to infinity, both the energy flux into the solar wind

and the velocity at infinity are unaffected by connecting up our solution

to one with a different value (presumably s = 2 for radial flow) at any

point beyond crit. For the case illustrated in Figure 1, Ccrit is 15

for s = 1 but has dropped to half that value when s = 3. Indeed, it

is just this lowering of Ccrit with increasing s which provides the

physical basis for our results: the lower the radius at which the

expansion velocity becomes supersonic, the higher the corresponding

density will be and hence the greater the flow of particles and energy

into the solar wind.

One definite failing of our model is that it does not explain the

observation by Krieger et al. (1973) that coronal holes are the source of

high velocity streams in the solar wind. For a polytrope model, the

velocity at infinity (which is approximately equal to the velocity vE

at the earth's orbit) is independent of s and depends only on T
c
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and o; this is easily seen from equation (18), noting the definitions

in equations (14) - (16). However, since T decreases as s increases,

the net result is that vE above a hole decreases in our model, which

contradicts the observations. The reason our model still works reasonably

well in spite of this failing is the fact that in the quiet solar wind

the gravitational energy per particle exceeds its kinetic energy by a

factor of about 4. This means that the energy flow into the solar wind

is not particularly sensitive to the solar wind velocity (except inasmuch

as it affects the total particle flux). Hence this energy flow can

increase substantially with increasing s, even though vE decreases.

One can make plausible arguments that in reality C would vary as s

varies and that the net result of this variation would be to increase vE,

but our opinion is that the present model is not sufficiently sophisticated

to do more than reflect the gross energetics of the solar wind. Quantita-

tively reliable calculations must be based on a solar wind model incor-

porating transport equations rather than a polytrope approximation, and

a model for the non-thermal heating of the solar corona.

A plot of Nw  vs. s was included in Figure 2 to emphasize the fact

that the density in the corona decreases with increasing s not only

because the density at its base goes down but also because the decreasing

11
temperature reduces the scale height. Hence the density at Rw (E 10 cm),

which is less than half a solar radius above the photosphere, drops by a

factor of more than 3 as s goes from 1 to 5.

In conclusion, while we realize that our model is not a highly

accurate representation of the solar atmosphere, we believe that our

results support the existence of a causal connection between diverging

field patterns and coronal holes.
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Figure Captions

Figure 1. (a) Plot of observed electron density versus temperature

for the upper transition region and lower corona (based

on data taken from Allen, 1973).

(b) Plot of density versus temperature based on equation (5),

where Nb was adjusted to make the turnover occur at the

same density as in Figure la.

Figure 2. Plot of Tc, Nc, and Nw as a function of s.
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